Diff-in-diff ||

March 11, 2020

Fill Out Your reading report PMAP 8521: Program Evaluation for Public Service Andrew Young School of Policy Studies Spring 2020

Plan for today

Quick talk about COVID-19

DiD full example

Quick talk about COVID-19

What is all this?

New virus in the coronavirus family

Officially named SARS-COV-2

Causes respiratory disease named COVID-19

What is all this?

Originated in Wuhan, Hubei Province, China

Don't call it "Chinese Coronavirus" or "Kung Flu" or other xenophobic names!

🕡 Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

Ξ

Symptoms

Fever and dry cough initially; pneumonia-like respiratory failure later for vulnerable people

Up to two weeks can pass between exposure and symptoms

Asymptomatic transmission likely possible

Lethality

COVID-19 mortality rate by age

Source: Chinese Center for Disease Control and Prevention

BUSINESS INSIDER

Lethality

Why is everything shutting down?

Time since first case

Adapted from CDC / The Economist

If you're young and healthy, all these cancellations and precautions are not about you!

Social distancing, staying home, washing your hands, etc. protects the vulnerable

Huge collective action problem!

What you can do

Wash hands for 20 seconds, disinfect phone, don't touch your face

Stay home if you're sick

Practice social distancing

Limit non-essential travel

Don't buy masks

Stock up on essentials but don't hoard

What does this mean for our class?

I HAVE NO IDEA YET

GSU hasn't made any official decisions

I'm committed to helping you all succeed and keep learning!

I'll continue to stream class via WebEx

2-week late work window is eliminated

Two wrongs make a right

Raising the minimum wage

What happens if you raise the minimum wage?

Economic theory says there should be fewer jobs

New Jersey in 1992

\$4.25 → \$5.05

Before vs. after

Average fast food jobs in NJ

Before: 20.44

After: 21.03

Δ: 0.59

Is this the causal effect?

Treatment vs. control

Average fast food jobs in states

NJ_{after}: 21.03

Is this the causal effect?

Comparing only before/after

Impossible to know if growth happened because of treatment or just naturally

Comparing only treatment/control

Impossible to know if any changes happened because of natural growth

	Pre mean	Post mean
Treatment	A (not yet treated)	B (treated)
Control	C (never treated)	D (never treated)

	Pre mean	Post mean	Δ (post–pre)
Treatment	A (not yet treated)	B (treated)	B-A
Control	C (never treated)	D (never treated)	D-C
		•	Growth!

	Pre mean	Post mean	
Treatment	A (not yet treated)	B (treated)	
Control	C (never treated)	D (never treated)	
Δ (trtmt–ctrl)	A-C	B-D	
	Within-group effects		

	Pre mean	Post mean	Δ (post–pre)
Treatment	A (not yet treated)	B (treated)	B-A
Control	C (never treated)	D (never treated)	D-C
Δ (trtmt-ctrl)	A-C	B-D	(B-A) - (D-C)
Growth of treatment – growth of control (DiD!)			

DD =
$$(\bar{x}_{\text{treatment, post}} - \bar{x}_{\text{treatment, pre}})$$

- $(\bar{x}_{\text{control, post}} - \bar{x}_{\text{control, pre}})$

	Pre mean	Post mean	Δ (post–pre)
NJ	A	B	B-A
	20.44	21.03	0.59
ΡΑ	C	D	D-C
	23.33	21.17	-2.16
Δ (trtmt–ctrl)	A-C -2.89	B-D -0.14	(0.59) – (–2.16) = <mark>2.76</mark>

>

Finding all the group means is tedious though!

What if there are other backdoors to worry about?

Regression to the rescue!

$Y_{it} = \alpha + \beta \operatorname{Group}_i + \gamma \operatorname{Time}_t + \delta \left(\operatorname{Group}_i \times \operatorname{Time}_t\right) + \epsilon_{it}$

model <- lm(outcome ~ group + time + group * time)

Group = 1/TRUE if treatment

Time = 1/TRUE if after

$Y_{it} = \alpha + \beta \operatorname{Group}_i + \gamma \operatorname{Time}_t + \delta \left(\operatorname{Group}_i \times \operatorname{Time}_t\right) + \epsilon_{it}$

model <- lm(outcome ~ group + time + group * time)</pre>

α = Mean of control, pre-treatment

β = Increase in outcome across groups

y = Increase in outcome across time

δ = Difference in differences!

$Y_{it} = \alpha + \beta \operatorname{Group}_i + \gamma \operatorname{Time}_t + \delta (\operatorname{Group}_i \times \operatorname{Time}_t) + \epsilon_{it}$

	Pre mean	Post mean	Δ (post–pre)
Control	α	α + γ	Y
Treatment	α + β	α + β + γ + δ	γ + δ
Δ (trtmt-ctrl)	β	β + δ	δ

