Veasurement and DAGS

February 5, 2020

Fill Out Your reading report PMAP 8521: Program Evaluation for Public Service Andrew Young School of Policy Studies Spring 2020

Plan for today

Abstraction, stretching, and validity

Causal models

Equations, paths, doors, and adjustment

Abstraction, stretching, and validity

Indicators

Inputs, activities, & outputs

Generally directly measurable

of citations mailed,% increase in grades, etc.

Outcomes

Harder to directly measure

Commitment to school, reduced risk factors

Conceptual stretching

Ladder of abstraction for witches

Connection to theory

Choose an outcome

List all the possible attributes of that outcome

Build a ladder of abstraction with all the attributes

Determine which level is sufficient for showing an effect

Juvenile delinquency School performance Poverty

Outcomes and programs

Outcome variable

Thing you're measuring

Outcome change

Δ in thing you're measuring over time

Program effect

Δ in thing you're measuring over time *because of* the program

Outcomes and programs

During program

After program

Connecting measurement to programs

Measurable definition of program effect

Ideal measurement

Feasible measurement

Connection to real world

Causal models

Experimental

Observational

You have control over which units get treatment You don't have control over which units get treatment

Which kind lets you prove causation?

Causation with observational data

Can you prove causation with observational data?

Why is it so controversial to use observational data?

Wow: this comment from fresh page proofs.

Guess all of us researching causal inference in observational data need to find new jobs?

normal person: this rain is making us wet

me, RCT genius: whoa there! First, take twenty walks and randomly apply the rain treatment

Laura Hatfield @laura_tastic · Jan 16 Wow: this comment from fresh page proofs.

Guess all of us researching causal inference in observational data need to find new jobs?

licare

ical

ir

Commented [DT1]: Causal language (including use of terms such as effect, efficacy, and predictor) should be used only for randomized clinical trials. For all other study designs, methods and results should be described in terms of association or, if appropriate tests were used, correlation, and should avoid cause-and-effect wording. We have

The causal revolution

Causal diagrams

Directed acyclic graphs (DAGs)

Graphical model of the process that generates the data

Maps your philosophical model

Fancy math ("do-calculus") tells you what to control for to find causation

Directed acyclic graphs encode our understanding of the causal model (or philosophy)

What is the causal effect of an additional year of education on earnings?

Step 1: List variables

Step 2: Simplify

Step 3: Connect arrows

Step 4: Use logic and math to determine which nodes and arrows to measure

1. List variables

Education (treatment)

Earnings (outcome)

List anything that's relevant

Things that cause or are caused by treatment, especially if they're related to both treatment and outcome

You don't have to actually observe or measure them all

1. List variables

Education (treatment)

Earnings (outcome)

LocationAbilityDemographicsSocioeconomic statusYear of birth

JULIUELUIIUIIIL SLALUS TEAT UT DITLI

Compulsory schooling laws Job connections

2. Simplify

Education (treatment)

Earnings (outcome)

Location	Ability	Demographics

Socioeconomic status Year of birth

Compulsory schooling laws Job connections

Background

Let the computer do this!

Your turn

Does a longer night's sleep extend your lifespan?

Step 1: List variables

Step 2: Simplify

Step 3: Connect arrows

Use dagitty.net

Equations, paths, doors, and adjustment

Causal identification

All these nodes are related; there's correlation between them all

We care about Edu → Earn, but what do we do with all the other nodes?

Causal identification

A causal effect is "identified" if the association between treatment and outcome is properly stripped and isolated

Paths and associations

Arrows in a DAG transmit associations

You can redirect and control those paths by "adjusting" or "conditioning"

Three types of associations

Common cause

Mediation

Selection / Endogeneity

Confounding

X causes Y

But Z causes both X and Y

Z confounds $X \rightarrow Y$ association

Paths between X and Y?

 $X \rightarrow Y$

 $X \leftarrow Z \rightarrow Y$

Z is a backdoor

Close the backdoor by adjusting for Z

Find what part of X (campaign money) is explained by Q (quality), subtract it out. This creates the residual part of X.

Find what part of Y (the win margin) is explained by Q (quality), subtract it out. This creates the residual part of Y.

Find relationship between residual part of X and residual part of Y. This is the causal effect.

How to adjust?

Include term in regression

Win margin = $\beta_0 + \beta_1$ Campaign money + β_2 Candidate quality + ϵ Win margin = $\alpha + \beta$ Campaign money + γ Candidate quality + ϵ

Matching Do-calculus Inverse probability weighting